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Abstract—The fault diagnostic model trained for a laboratory
case machine fails to perform well on the industrial machines
running under variable operating conditions. For every new op-
erating condition of such machines, a new diagnostic model has to
be trained which is a time-consuming and uneconomical process.
Therefore, we propose a quick learning mechanism that can trans-
form the existing diagnostic model into a new model suitable for in-
dustrial machines operating in different conditions. The proposed
method uses the Net2Net transformation followed by a fine-tuning
to cancel/minimize the maximum mean discrepancy between the
new data and the previous one. The fine-tuning of the model
requires a very less amount of labeled target samples and very few
iterations of training. Therefore, the proposed method is capable
of learning the new target data pattern quickly. The effectiveness
of the proposed fault diagnosis method has been demonstrated on
the Case Western Reserve University dataset, Intelligent Mainte-
nance Systems bearing dataset, and Paderborn university dataset
under the wide variations of the operating conditions. It has been
validated that the diagnostic model trained on artificially damaged
fault datasets can be used to quickly train another model for a real
damage dataset.

Impact Statement—The operating condition of the real-time
machines in the industries may change depending on the loads
or applications. For fault diagnosis of such machines, training a
diagnostic model for every change in operating condition is not
feasible in real-time. The quick learning mechanism proposed in
this paper solves this problem by transforming the existing diag-
nostic model from laboratory case machines to real case machines
running under any load conditions. The proposed methodology is
capable to generate and train a suitable diagnostic model quickly
for every new operating condition and therefore this method can be
a very promising solution for the real-time monitoring of industrial
case machines.

Index Terms—Condition-based maintenance, domain
adaptation, intelligent fault diagnosis, maximum mean discrepancy
(MMD), Net2Net operation, transfer learning.

I. INTRODUCTION

THE continuous monitoring of real-time industrial rotating
machines plays a vital role in the safety and productivity

of modern industries. It requires a diagnostic model for analysis
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of the measurement data generated by the continuous processes.
For the fault diagnosis of real-time industrial machines, there
are two main challenges: i) unavailability of the labeled dataset
as some machines may not be allowed to run in a failure state,
which may cause catastrophic accidents or critical breakdown
and ii) distribution of the dataset may change due to change in
the operating condition of the machine.

In literature, various data-driven approaches have been re-
ported for intelligent health monitoring of the rotating machines,
also called condition-based maintenance (CBM). The intelli-
gent systems based on evolutionary algorithm [1]–[3], fuzzy
systems [4], and deep neural networks (DNNs) [5], [6] are
applied for learning the complex pattern from recorded data.
It monitors specific changes in the machine signatures like vi-
bration, acoustics, temperature, pressure, etc, [7]–[9] and notify
the anomaly/fault in the various component of the machine.

Vibration-based CBM has gained much attention due to its
effectiveness and flexibility in assessing the machine health
conditions using time-domain and frequency-domain methods
of signal analysis, [10]–[13]. But these approaches become
ineffective if there is a contamination of extraneous frequencies
and there is a change in the dynamic behavior of the machine.
The recent advancement in machine learning techniques over-
comes these problems and is capable to learn highly nonlinear
and complex characteristics of a data pattern and diagnose
the machine health condition [14]–[19]. These methods give
accurate/commendable results for the test dataset exactly similar
to the training data. If the operating condition of the machine is
variable, the diagnostic model fails to perform well unless the
model is retrained for the new data pattern. For such problems,
knowledge transfer (also called transfer learning) gives a better
solution [20]–[22], where training is accelerated by transferring
the previous knowledge to the new similar task.

Pratt [20] formulated a discriminability-based transfer al-
gorithm to introduce the concept of transfer learning. It uses
previously learned knowledge to initialize the parameter of the
target model to reduce the time of training. In most of the
approaches of the transfer learning [21], the pretrained model
on the source dataset is fine-tuned using a similar target dataset.
If the distribution of the target data is different, fine-tuning the
model requires a large amount of labeled target data and a long
training process. For such cases, the transfer learning method
fails to train the model using a small number of training samples
from the target domain. To solve the problem of cross-domain
fault analysis, domain adaptation (DA) techniques have been
reported in various literature [23]–[29].
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Pan et al. [23] proposed a learning mechanism for shared
subspace using transfer component analysis via minimizing
maximum mean discrepancy (MMD) of the source and the target
features representations. Ganin et al. [25] proposed a domain
adversarial training of DNN which uses labeled source data and
unlabeled target data. Wen et al. [26] have suggested the min-
imization of combined objective function of classifier loss and
the MMD term for the domain adaptation during fine-tuning of
the model. Similarly, Lu et al. [27] use MMD term to model the
loss due to change in probability distribution in a subspace and
obtained a training law for DNN. These methods of transferring
knowledge are not useful if the change in the data pattern needs
a deep learning model with different architecture.

Chen et al. [30] has proposed Net2Net transformation to
initialize a new (student) network from a previously trained
(teacher) network based on the function preserving principle.
The function-preserving principle allows us to quickly change
the architecture of the network without changing the function
mapping. If the student network with new architecture has to be
used with a new dataset of a different probability distribution,
it requires a sufficient amount of data and a large number of
iterations to learn the new data pattern. Again, it becomes a
challenge to quickly adapt with the change in the data pattern
during the continuous process of experimentation.

To solve this problem, we propose a quick learning mecha-
nism based on Net2Net transformation followed by fine-tuning
with a domain adaptation algorithm. The process of fine-tuning
minimizes the classification loss plus domain discrepancy using
a few number of samples from the target domain. The key
contributions of this work are summarized as follows.

1) The proposed mechanism is capable to train a DNN of
user-provided architecture needed for the fault diagnosis
of machines under variable working conditions.

2) The main novelty of the proposed work is that the de-
sired architecture suitable for the industrial machine is
generated from a trained DNN. The fine-tuning of the new
DNN includes minimization of classification loss as well
as MMD term. Therefore, the new DNN requires a less
amount of target data and a few iterations of training. This
makes the algorithm to learn the new pattern of the dataset
faster.

The rest of this article is organized as follows. Section II
briefly describes the theoretical background of DNN, domain
adaptation, and function-preserving network transformation.
Section III describes the development of quick learning sys-
tem: the proposed approach. In Section IV, effectiveness of the
proposed fault diagnosis approach has been demonstrated on
i) Case Western Reserve University (CWRU) fault diagnosis
bearing data [31], ii) Intelligent Maintenance Systems (IMS)
bearing dataset [32], and iii) Paderborn university dataset [33].
Finally, Section V concludes the article.

II. THEORETICAL BACKGROUND

A. Deep Neural Network

DNN is a multilayer neural network (NN) capable of highly
nonlinear transformation through each layer depending on the

Fig. 1. Formation of stacked auto-encoder with three hidden layer.

types of activation function chosen to fit the problem. The
training of the network includes obtaining optimal weight to map
the input–output dataset. The DNN discussed in this section is
a multilayered network called stacked autoencoder (SAE) [34],
which is trained by the method of greedy layer unsupervised
learning using unlabeled data followed by fine-tuning using
labeled data. The formation of SAE by stacking autoencoders is
depicted in Fig. 1.

Learning Mechanism of Autoencoder: The autoencoder is
trained to learn the identity approximation [34] of the unlabeled
dataset, hW,b(X) ≈ X , whereW denotes the weight matrix and
b is the bias vector of the hidden layer of the autoencoder. For
an unlabeled dataset, the cost function J for sparse autoencoder
in terms of weight W and bias b is defined as

J =
1

N

N∑
i=1

1

2

∥∥hW,b(X
l)−Xl

∥∥2 + λ

2

dl∑
i=1

dl+1∑
j=1

(Wji)
2

+ β

dl∑
j=1

KL(ρ/ρ̂) (1)

where N be the number of training samples, Xl be the input
samples to the lth autoencoder, λ be the regularization parameter,
dl denotes the number of nodes in the lth layer, ρ be the
sparsity parameter, β be the weight-penalizing deviation from ρ,
and KL(.) denotes the Kullback–Leibler divergence function.
Sparsity is the mean of activation of a hidden layer averaged
over the training set and is enforced to be equal to a given
sparsity parameter. Therefore, sparsity constraint ensures the
desired sparsity of the generated feature representation(s) at the
hidden layer. Regularization parameter [35] is used to ensure the
appropriate fitting of the DNN hyperparameters for the training
dataset and avoid overfitting or underfitting for the testing on
unseen data.

B. Domain Adaptation

Domain adaptation in transfer learning creates a self-taught
system that learns the target data-mapping without the avail-
ability of labeled data or with partial availability of labeled
datasets. Domain adaptation by minimizing MMD has gained
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Fig. 2. Net2WiderNet transformation: h3 be the new node.

much popularity due to its capability of domain shift in the
shared subspace.

1) Maximum Mean Discrepancy (MMD): MMD gives the
measure of nonparametric distance between mean of two distri-
butions on reproducing kernel Hilbert space (RKHS) [36], [37].
For a universal RKHS, MMD asymptotically becomes zero if
and only if the probability distribution of the two datasets is the
same. Let xsi ∈ Xs and xtj ∈ Xt be the ith source data and the
jth target data in the source space χs and the target space χt,
respectively, then the MMD of the two distribution in RKHS is
defined as

MMD(Xs,Xt) =

∥∥∥∥∥∥
1

ns

ns∑
i=1

f (xsi )−
1

nt

nt∑
j=1

f
(
xtj
)∥∥∥∥∥∥
H

(2)

where f(.) denotes the kernel function f : X,X → H,H be the
universal RKHS, and ns and nt be the number of samples in the
source and the target datasets Xs and Xt, respectively.

2) Function-Preserving Transformation: A function y =
f(x;ψ) represented by an NN model can equivalently be repre-
sented by another NN model g(x;ψ′) if a new set of parameter
ψ′ is chosen such that

∀x, f(x;ψ) = g(x;ψ′) (3)

where x is the input dataset, y is the output class label, and
ψ and ψ′ are the NN parameter vector. This concept allows us
for two types of network transformations: Net2WiderNet and
Net2DeeperNet.

3) Net2WiderNet: Net2WiderNet transformation is used to
widen the network by adding nodes in any of the hidden layers
of a network [30]. We consider a simple example to elaborate
on the idea of replacing the network with a wider network as
shown in Fig. 2.

Let the network in Fig. 2(a) be trained on a given dataset and
be treated as the teacher network to train a wider network, called
student network in Fig. 2(b). The knowledge of the network in
Fig. 2(a) is transferred to initialize the parameters of a wider
network in Fig. 2(b) such that it provides the same output as the
network in Fig. 2(a). Random nodes are picked from the hidden
layer and replicated as new nodes. Here, the weights of the h2
node (b, d, and f ) are replicated as the connections to the new
node h3. The outgoing weights are divided by 2 to compensate
for the replication of h2.

The above idea can easily be generalized with a recursive
function for more than one layer and to add more than one
node in a layer. Let us assume that a trained network has n2

Fig. 3. Net2DeeperNet transformation: kth be the new layer.

number of nodes in the lth layer and has to be widened to
n′2(> n2). To initialize the weight matrix in the new network, a
random sampling function � : {1, 2, . . . , n′2} → {1, 2, . . . , n2}
is defined for the repetition of nodes as

�(j)
Δ
=

{
j j ≤ n2
random sample from {1, . . . , n2} j > n2

(4)

where j is the node index from 1 to n′2 in the new network. Once
random repetition of nodes is chosen, weights are assigned as
demonstrated in Fig. 2.

4) Net2DeeperNet: Net2DeeperNet transformation allows
us to insert a new layer to the network to transform it into a
deeper network [30].

In Fig. 3, deeper model is created by inserting a layer k after
the hidden layer l having the same number of nodes as in layer l.
Let the output of the lth layer be v(l) = φ(v(l−1)TW (l)), where
φ(.) represents the mapping by the lth layer and W (l) be the
weight matrix in between (l − 1)th and lth layers. The new kth
layer is inserted such that its output is is given by

v(k) = φ
(
W (k)Tφ

(
v(l−1)TW (l)

))
(5)

where W (k) is the weight matrix in between lth and kth layers
and initialized to be identity matrix.

III. QUICK LEARNING MECHANISM: PROPOSED

METHODOLOGY

We propose a network transformation method using the
function-preserving principle of the NN model and minimization
of MMD term from source to target dataset. The flowchart of the
proposed method is depicted in Fig. 4. For the process shown in
Fig. 4, X(s) denotes the source dataset, X(t) the target dataset,
and Wte, bte denote the weight and bias matrices of the teacher
network and Wstu, bstu of student network. The whole learning
mechanism includes two steps as described in the following
subsections.

A. Step-1: Network Transformation

The knowledge transfer using the function-preserving concept
allows us to transform the network to a new architecture without
losing the function mapping (as described in Sections II-B3 and
II-B4). Let Wte, bte be the weight and bias matrices of the
teacher network. Using Net2Net transformation, initial weight
and bias Wstu and bstu of student network are obtained, and then,
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Fig. 4. Flowchart of the quick learning methodology (width and depth of the
DNN shown here are for demonstration only).

Algorithm 1: Train the Teacher Network (DNN Model).
1: Train autoencoder (AE)
2: for i ∈ Number of hidden layers do

AEi ←− [hi−1, hi, hi−1] # Train the ith AE,
hi = ith hidden layer i− 1 for i = 1 indicates the
input data

3: end for
4: DNN←− [Input, h1, h2, . . ., hl,Softmax layer] #

Form DNN by stacking all hidden layers with input
and output layers

5: Classification loss J(W, b)←−MSE [true label,
predicted label] # Calculate mean-square error
(MSE)

6: Fine-tune the network to find the optimal parameter
(weight and bias vectors)

7: Teacher network←− Train DNN

the network weights are fine-tuned using the new (target) dataset
by incorporating MMD term with the classifier loss.

B. Step-2: Fine-Tune With Domain Adaptation

The classification loss for the C class problem and the MMD
term is defined using the h-level feature output of the new
architecture for the source dataset and target dataset as follows:

JMMD =

C∑
i=1

∥∥∥∥∥∥
1

N
(s)
i

N
(s)
i∑
p=1

f(x
(s)
i,p )−

1

N
(t)
i

N
(t)
i∑

q=1

f(x
(t)
i,q)

∥∥∥∥∥∥
2

H
(6)

Jc = 1

N (s)

[
Ns∑
p=1

C∑
i=1

I[yp = C] log
e(w

T
i f(x

s
p)+bi)∑C

i=1 e
(wT

i f(x
s
p)+bi)

]

(7)

where f(x) = Φ(Wx+ b) is the h-level features representation
of DNN, and N

(s)
i and N

(t)
i are the number of samples in

the ith of the source dataset X(s) and the target dataset X(t),

Algorithm 2: Algorithmic Steps for Quick Learning Mech-
anism: The Proposed Methodology.

Input:
Teacher network parameters: Wte, bte

target datasets: X(t)

Output:
Fine-tuned network in the target domain.

1: for l ∈ layers to be replicated do
a) Add new layer k after layer l of size same as l
b) Assign weight matrix to new layer U (l) = In

(identity matrix) to satisfy (5)
2: end for
3: for l ∈ layers to be widened do

a) Let number of nodes in layers l − 1, l, and l + 1 be
nl−1, nl, and nl+1 and number of nodes to be
added = n.

b) Generate random samples � ∈ [1, nl] using
equation (4)

c) Let rj denotes the number of repetition of jth node
in random samples �

d) Let W (l)
j,i denotes the weight connecting ith node in

(l − 1)th layer to jth node in lth layer
e) W (l+1)

k,j denotes the weight connecting jth

node in lth layer to kth node in (l + 1)th layer
f) for j ∈ [nl + 1, nl + n] do

for i ∈ [1, nl−1] do
W

(l)
j,i = W

(l)
�−nl,i

& b
(l)
j = b

(l)
�j−nl

end for
for k ∈ [1, nl+1] do

Assign W
(l+1)
k,j = W

(l+1)
k,�j−nl

/
rj

Update Wk
k,�j−nl

= W
(l+1)
k,�j−nl

/
rj

end for
g) end for

4: end for
5: Result: student network (weight matrix: Wstu, bstu
6: Fine-tune the Network: Update the weight and bias

using equations (10) and (11) to get the optima weight
matrix

7: end

respectively.N (s) be the batch size of the source data, yp be the
source label, and [wi, bi] be the weight and bias connecting the
ith node in the output (softmax) layer. Parameters of the student
network are optimized by minimizing the loss function (8).

J = Jc + λJMMD. (8)

Let ψf = [Wstu, bstu] and ψc = [Wc, bc] be the parameters of
the feature extractor (DNN) and classifier, respectively, then the
loss function can be minimized to obtain the optimal network
parameters by solving (9).

min
ψf , ψc

J = min
ψf , ψc

[Jc(ψf , ψc) + λJMMD(ψf )] . (9)
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The cost function optimization objective stated in (9) is
achieved by Limited-Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) [38] algorithm or optimal weights can also be obtained
using gradient descent as follows:

ψf ← ψf − η
[
∂Jc(ψf , ψc)

∂ψf
+ λ

∂JMMD(ψf )

∂ψf

]
(10)

ψc ← ψc − η ∂Jc(ψf , ψc)
∂ψc

(11)

where η is the learning rate for the parameter update.
The training process in the proposed method requires a pre-

trained DNN; therefore, the algorithmic steps for the training of
DNN are given in Algorithm 1. The algorithmic steps for the
proposed methodology is presented in Algorithm 2.

IV. RESULTS AND DISCUSSION

Effectiveness of the proposed framework of network trans-
formation with domain adaptation has been demonstrated us-
ing CWRU fault diagnosis bearing data [31], IMS bearing
dataset [32], and Paderborn university dataset [33].

A. Dataset Description

1) CWRU Bearing Data [31]: The bearing dataset provided
by CWRU was recorded on a ball-bearing testing platform.
Using electrodischarge machining, motor bearings were seeded
with faults of fault diameters 7, 14, and 21 mils (1 mil = 0.001
inches) at the inner raceway, rolling element (i.e., ball), and outer
raceway. The vibration data were recorded with motor loads of
0–3 HP and motor speeds of 1730–1797 r/min in four different
cases: i) normal baseline data, ii) 12k samples/s drive end (DE)
fault data, iii) 48k samples/s DE bearing fault data, and iv)
fan-end (FE) bearing fault data (recorded at 12k samples/s). The
vibration signal represents four different states of the machine:
i) healthy/normal (N), ii) inner race (IR), iii) outer race (OR),
and iv) rolling element (ball: B).

2) IMS Bearing Dataset [32]: IMS bearing datasets [32] are
provided by National Science Faundation Industry/ University
Cooperative Research Center (NSFI/UCRC) of IMS. It consists
of three datasets recorded using high-sensitivity quartz ICP
accelerometers installed on four bearing housing (bearings-1
to 4: two accelerometers at each bearing for dataset-1, one
accelerometer at each bearing for datasets-2 and 3). Each dataset
contains a vibration signal recorded for 1; s at the sampling rate
of 20 kHz. In the case of dataset-1, bearing-3 and bearing-4
get inner race defect and roller element defect, respectively, at
the end of the test-to-failure experiment. Bearing-1 in dataset-2
and bearing-3 in dataset-3 get OR defect at the end of the
test-to-failure.

3) Padeborn University Dataset [33]: The Paderborn univer-
sity dataset is the best dataset for monitoring of bearing faults
of electromagnetic rotating machines under a wide variety of
operating conditions. It contains recorded signals of 32 different
bearing experiments categorized as follows:

1) Six experiments on healthy bearings;
2) 12 experiments on artificially damaged bearings; and

3) 14 experiments on real damaged bearings by accelerated
lifetime tests.

Dataset from each experiment has measurements of motor
phase currents, vibration, speed, torque, bearing temperature,
and radial force. Each dataset contains 20 measurements of 4 s
under four different settings of speed, torque, and force. The four
settings are i) L1: N09_M07_F10 (speed = 900 r/min, torque =
0.7 Nm and radial force = 1000 N); ii) L2: N15_M01_F10
(speed = 1500 r/min, torque = 0.1 Nm and radial force =
1000 N); iii) L3: N15_M07_F04 (speed= 1500 r/min, torque=
0.7 Nm and radial force = 400 N); and iv) L4: N15_M07_F10
(speed = 1500 r/min, torque = 0.7 Nm and radial force =
1000 N). There are two categories of faults: IR damage and
OR damage. Each category of faults contains wide variety of
damages and different level of damage represented by the extent
of damage (details can be found in [33]).

B. Preprocessing

The sensor data are usually contaminated with noises and
not well structured, which makes it unsuitable for the training
of a network. Data preprocessing is required, which involves
filtering, clipping, smoothing, and normalization to convert the
dataset well structured. We have used the preprocessed data and
rescaled into [0, 1] using min–max normalization before training
the network.

xnormalized =
x− xmin

xmax − xmin
(12)

where x is the un-normalized data, xnormalized is the normalized
data, and xmin and xmax are minimum and maximum values
of the data. Now, the data is is split into train & test datasets
using five-fold cross-validation sampling technique for better
generalization of the model.

C. Segmentation and Evaluation Scheme

The recorded data files have the time-series signals and
there is a huge number of sample points (at least 121 265
points) in each class which may not be directly suitable for
training the DNN. Therefore, source and target datasets are
prepared by segmenting the recorded samples with the segment
length of approximately 100 data points for the CWRU/IMS
dataset and 400 data points for the Paderborn University
dataset. For example, if a time-series signal contains 121 000
points, it can be converted into 1210× 100 data samples per
class.

Effectiveness of the domain adaptation of the proposed algo-
rithm is studied in two cases.

1) Case-I: CWRU dataset + IMS dataset: The source and
the target dataset represents four classes: N, IR, B, and OR as
provided in Table I.

i) Source Data: Source dataset is created from 12 k Hz DE
fault with fault dia. = 7 mil and load = 0 hp. With the
segment length of 100 data points, 1210× 100 samples
per class are created. Therefore, source data has the size
of 4840× 100.
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Fig. 5. Domain change from source to target for the two cases. (a) Source and target datasets as described in Table I. (b) Source and target data as described in
Table II (the waveform in red, blue, and magenta colors is the vibration signals).

TABLE I
CWRU [31] AND IMS [32] DATASET DESCRIPTION

ii) Target 1: Target 1 (T1) is prepared using the CWRU
dataset for the 12 k Hz DE fault with 7, 14, and 21 mil
fault diameter and at 1, 2, and 3 hp motor load. For each
case, 40 000 sample points from the time-series signal
are used to create a dataset of 400× 100 per class.

iii) Target 2: Target 2 (T2) is prepared using IMS dataset
recorded at 26.6 kN motor load. A total of 40 000 data
points are taken to create a dataset of 400× 100 per class.

2) Case-II: Paderborn university dataset: The source and the
target dataset represents three classes: N, OR, and IR.

i) Source Data: Source dataset is created using artificially
damaged fault dataset with the extent of damage for OR
and IR fault = 1. Each measurement file contains approx-
imately 25 6001 sample points as a time-series signal.
With the segment length of 400 data points, 10 000 ×400
samples per class were created using 20 measurement data
files from each class as mentioned in Table II.

ii) Targets 3 and 4: Target data [target 3 (T3) and target 4
(T4)] are selected from real damaged fault dataset as sum-
marized in Table II. Samples for both the target datasets
(T3 and T4) are considered under four load settings L1,

L2, L3, and L4. 500 × 400 samples per class is created
using one measurement file from each class.

The selection of the source and the target datasets as described
above has also been pictorially shown in Fig. 5.

D. Training and Results

For the demonstration of the efficacy of the proposed method,
first, the teacher model (DNN with hidden layers: 70− 30− 20)
is trained on the source data using Algorithm 1. The hyper-
parameter of the DNN for its training is as follows: regular-
ization parameter (λ) = 0.05, sparsity parameter (ρ) = 0.1,
weight-penalizing deviation (β) = 0.8, method of parameter
optimization = “lbfgs.”

This model is used to train DNN with new architecture (here
we have selected the new architecture as 70− 50− 30− 20)
suitable for the machine running on different operating con-
ditions. The target datasets from each case as described in
Tables I and II are normalized and then split into train-test
datasets using five-fold cross-validation sampling technique.
Now, the new model is trained using Algorithm 2 on the train-
ing datasets from targets 1, 2, 3, and 4. Parameter optimiza-
tion of the new model is done using backpropagation with
softmax as classifier. The network is trained for 50 iteration
with adaptive learning rate. Classification accuracies on the
test datasets from each case are generated and presented in
Tables III and IV.

To show the effectiveness of the proposed method, we have
compared the results with the most advanced and similar
methodologies of the fault diagnosis of rotating machines. As re-
ported in literature review, the selected algorithms are DNN [5],
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TABLE II
PADERBORN UNIVERSITY DATASET [33] DESCRIPTION

TABLE III
ACCURACY ON CWRU DE FAULT DATASET AND IMS DATASET

domain adversarial neural network (DANN) [25], deep transfer
learning (DTL) with classification loss and MMD term mini-
mization [26], and DNN for domain adaptation in fault diagnosis
(DAFD) [27]. All these models are also trained using the same
dataset. The architecture of the DNN and the DTL is kept the
same as the new model (student net): 70− 50− 30− 20.

DNN with the new architecture has been trained from scratch
on the target datasets: T1, T2, T3, and T4. DANN has been
trained using labeled source data and the unlabeled target
data [25]. DTL with the new architecture is pretrained on unla-
beled source data and fine-tuned on the target data based using
the method in [26] and [27]. The high-level feature output of the
deep learning algorithm is used to trained the softmax classifier
(SC), and classification accuracies are presented in Tables III
and IV. Average training time under the same computational
condition for each algorithm is compared in Table V. The h-level
feature visualization of all the methods for the CWRU DE fault
dataset (T1, 7 mils, 1 hp) is presented in Fig. 6.

E. Discussion

Based on the results shown in Tables III and IV and the feature
visualization in Fig. 6, the following points can observed.

1) The proposed method (Net2Net with DA) performs better
for all operating conditions as compared to the state-of-
the-art methods. Here, DNN fails to perform on the par
because it is trained on the small target data (insufficient
training data) from scratch. Similarly, DTL with DA over-
fits due to an insufficient amount of the target data. In the
case of the proposed method, the knowledge of the source
data is transferred via function-preserving principle to the
new network with a suitable architecture. The transformed
model is almost ready for the new data pattern. Further,
the transformed model is fine-tuned using the target data
to minimize the classification loss and the distribution
discrepancy. Therefore, the proposed method performs
better even if a very less amount of the target data is
available.
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TABLE IV
ACCURACY ON PADERBORN UNIVERSITY DATASET WITH DIFFERENT SPEED (N, M, F), LOAD, AND RADIAL FORCE

TABLE V
AVERAGE TRAINING TIME (S) ON THE SAME MACHINE UNDER IDENTICAL CONDITION

2) The comparison of the standard deviation (SD) over the
various operating conditions shows the stability of the
performance. It can be observed that the results by the
Net2Net with DA are more stable with the variations in the
operating conditions. Results of the DANN are the most
unstable because DANN tries to adapt with an unlabeled
target dataset which is very small in number.

3) For the Paderborn University dataset, source data is taken
from the machine with artificially damage faults and the
target datasets are from real damaged (run to failure case).
From IV, it can be observed that the results with Net2Net
are stable even under wide variations of the operating
conditions and the extent of the damage.

4) Fig. 6 shows h-level feature visualization using the t-SNE.
It can be observed that the h-level features from Net2Net
with DA are more clearly separated from each other as
compared to the state-of-the-art methods.

5) The performance of the proposed method under a re-
duced number of available labeled target samples (10%
of the samples) is also presented in Tables III and IV. For
the reduced number of the target samples, the effect of

the domain adaptation [in (9)] is reduced, and therefore,
the reduction in the performance. However, the perfor-
mance of the proposed method is still better than the other
state-of-the-art methods because of the knowledge transfer
through network transformation.

6) If the number of training samples or the number of training
iterations is reduced, the training time will be reduced, but
it may result in overfitting of the network training leading
to poor accuracy. On the other hand, if we wish to further
improve the accuracy, more samples will be required, but
this will increase the computational time.

F. Complexity of the Proposed Method

The training process of the proposed algorithm includes i)
network transformation (initialization using function-preserving
principle) and ii) the fine-tuning to obtain optimal parameters by
solving the minimization objective in (9). The network trans-
formation includes the conversion, insertion, and/or removal
elements from parameter matrices. Therefore, the time com-
plexity of the whole training process is mainly contributed by the
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Fig. 6. Feature visualization for CWRU DE fault data (with 7 mil fault diameter and 1 hp motor load) using t-SNE.

fine-tuning process to get the optimality of (9), which is similar
to training the DNN using the backpropagation algorithm. Let n
denote the number of data points, d dimensionality of the input
data, i, j, k are the number of nodes in the hidden layers in the
network, c be the number output class, and N be the number of
iterations required for the training. The time complexity analysis
using O(.) [39] for the process of fine-tuning can be expressed
as O(N ∗ n ∗ (d ∗ i+ i ∗ j + j ∗ k + k ∗ c)).

Since the fine-tuning requires a very less amount of labeled
target data and only a few iterations, the training process takes
very little time. The time complexity of each method listed is
different because the training process in each method is different.
However, assuming the same task of the fault diagnosis to
be performed, the time comparison in Table V gives useful
information about the quick adaptation of the proposed method
under the variable operating conditions.

V. CONCLUSION

In this article, we have proposed a quick learning methodology
based on Net2Net transformation followed by a fine-tuning
to minimize classification loss and domain discrepancy. The
proposed method is very effective for intelligent fault diagnosis
under the variable operating conditions of industrial rotating
machines. The fine-tuning process requires a very less amount
of target data and a few number of iterations for fine-tuning;

therefore, the method is capable for quick adaptation to the
change in the operating condition. Also, the performance of
the proposed method is stable under the variable operating
conditions compared to the state-of-the-art methods. Therefore,
the proposed method is very useful for continuous monitoring
of the industrial machines.

The proposed method of network transformation has a broad
scope in the future for developing lifelong learning systems.
This work can be extended to develop a network optimization
algorithm capable of adjusting its architecture depending upon
the change in the operating conditions.
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